Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014203

RESUMEN

A system enabling the expression of therapeutic proteins specifically in diseased cells would be transformative, providing greatly increased safety and the possibility of pre-emptive treatment. Here we describe "TDP-REG", a precision medicine approach primarily for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which exploits the cryptic splicing events that occur in cells with TDP-43 loss-of-function (TDP-LOF) in order to drive expression specifically in diseased cells. In addition to modifying existing cryptic exons for this purpose, we develop a deep-learning-powered algorithm for generating customisable cryptic splicing events, which can be embedded within virtually any coding sequence. By placing part of a coding sequence within a novel cryptic exon, we tightly couple protein expression to TDP-LOF. Protein expression is activated by TDP-LOF in vitro and in vivo, including TDP-LOF induced by cytoplasmic TDP-43 aggregation. In addition to generating a variety of fluorescent and luminescent reporters, we use this system to perform TDP-LOF-dependent genomic prime editing to ablate the UNC13A cryptic donor splice site. Furthermore, we design a panel of tightly gated, autoregulating vectors encoding a TDP-43/Raver1 fusion protein, which rescue key pathological cryptic splicing events. In summary, we combine deep-learning and rational design to create sophisticated splicing sensors, resulting in a platform that provides far safer therapeutics for neurodegeneration, potentially even enabling preemptive treatment of at-risk individuals.

2.
EMBO Mol Med ; 15(10): e17393, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642150

RESUMEN

Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X-linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg ), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno-associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease.

3.
Epilepsy Behav ; 132: 108741, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653814

RESUMEN

Dravet Syndrome is a genetic epileptic syndrome characterized by severe and intractable seizures associated with cognitive, motor, and behavioral impairments. The disease is also linked with increased mortality mainly due to sudden unexpected death in epilepsy. Over 80% of cases are due to a de novo mutation in one allele of the SCN1A gene, which encodes the α-subunit of the voltage-gated ion channel NaV1.1. Dravet Syndrome is usually refractory to antiepileptic drugs, which only alleviate seizures to a small extent. Viral, non-viral genetic therapy, and gene editing tools are rapidly enhancing and providing new platforms for more effective, alternative medicinal treatments for Dravet syndrome. These strategies include gene supplementation, CRISPR-mediated transcriptional activation, and the use of antisense oligonucleotides. In this review, we summarize our current knowledge of novel genetic therapies that are currently under development for Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Espasmos Infantiles , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/terapia , Epilepsia/complicaciones , Síndromes Epilépticos , Humanos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/complicaciones , Espasmos Infantiles/complicaciones
4.
J Virol Methods ; 299: 114305, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626684

RESUMEN

Adenoviruses (AdVs) are used as gene therapy vectors to treat human diseases and as vaccines against COVID-19. AdVs are produced by transfecting human embryonic kidney 239 (HEK293) or PER.C6 virus producer cells with AdV plasmid vectors or infecting these cells withcell lysates containing replication-defective AdV. Cell lysates can be purified further by caesium chloride or chromatographic protocols to research virus seed stocks (RVSS) for characterisation to high quality master virus seed stocks (MVSS) and working virus seed stocks (WVSS) before downstream production of pure, high titre AdV. Lysates are poorly infectious, block filtration columns and have limited storage capability. Aqueous two-phase systems (ATPS) are an alternative method for AdV purification that rapidly generates cleaner RVSS for characterisation to MVSS. After testing multiple ATPS formulations, an aqueous mixture of 20 % PEG 600 and 20 % (NH4)2SO4 (w/w) was found most effective for AdV partitioning, producing up to 97+3% yield of high-titre virus that was devoid of aggregates both effective in vitro and in vivo with no observable cytotoxicity. Importantly, AdV preparations stored at -20 °C or 4 °C show negligible loss of titre and are suitable for downstream processing to clinical grade to support the need for AdV vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adenoviridae/genética , Vectores Genéticos , Células HEK293 , Humanos , SARS-CoV-2 , Tecnología
5.
Sci Transl Med ; 13(594)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011628

RESUMEN

Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFα-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-µ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS.


Asunto(s)
Terapia Genética , Células Madre Pluripotentes Inducidas , Trastornos Parkinsonianos , Animales , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/terapia , Sustancia Negra/metabolismo
6.
Mol Ther Methods Clin Dev ; 20: 357-365, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33553484

RESUMEN

Lentiviral (LV) vectors based on human immunodeficiency virus type I (HIV-1) package two copies of their single-stranded RNA into vector particles. Normally, this RNA genome is reverse transcribed into a double-stranded DNA provirus that integrates into the cell genome, providing permanent gene transfer and long-term expression. Integration-deficient LV vectors have been developed to reduce the frequency of genomic integration and thereby limit their persistence in dividing cells. Here, we describe optimization of a reverse-transcriptase-deficient LV vector, which enables direct translation of LV RNA genomes upon cell entry, for transient expression of vector payloads as mRNA without a DNA intermediate. We have engineered a novel LV genome arrangement in which HIV-1 sequences are removed from the 5' end, to enable ribosomal entry from the 5' 7-methylguanylate cap for efficient translation of the vector payload. We have shown that this LV-mediated mRNA delivery platform provides transient transgene expression in vitro and in vivo. This has a potential application in gene and cell therapy scenarios requiring temporary payload expression in cells and tissues that can be targeted with pseudotyped LV vectors.

7.
Front Immunol ; 11: 106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117260

RESUMEN

Approximately 40% of preterm births are preceded by microbial invasion of the intrauterine space; ascent from the vagina being the most common pathway. Within the cervical canal, antimicrobial peptides and proteins (AMPs) are important components of the cervical barrier which help to prevent ascending vaginal infection. We investigated whether expression of the AMP, human ß-defensin-3 (HBD3), in the cervical mucosa of pregnant mice could prevent bacterial ascent from the vagina into the uterine cavity. An adeno-associated virus vector containing both the HBD3 gene and GFP transgene (AAV8 HBD3.GFP) or control AAV8 GFP, was administered intravaginally into E13.5 pregnant mice. Ascending infection was induced at E16.5 using bioluminescent Escherichia coli (E. coli K1 A192PP-lux2). Bioluminescence imaging showed bacterial ascent into the uterine cavity, inflammatory events that led to premature delivery and a reduction in pups born alive, compared with uninfected controls. Interestingly, a significant reduction in uterine bioluminescence in the AAV8 HBD3.GFP-treated mice was observed 24 h post-E. coli infection, compared to AAV8 GFP treated mice, signifying reduced bacterial ascent in AAV8 HBD3.GFP-treated mice. Furthermore, there was a significant increase in the number of living pups in AAV HBD3.GFP-treated mice. We propose that HBD3 may be a potential candidate for augmenting cervical innate immunity to prevent ascending infection-related preterm birth and its associated neonatal consequences.


Asunto(s)
Cuello del Útero/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli , Técnicas de Transferencia de Gen , Complicaciones Infecciosas del Embarazo/inmunología , Nacimiento Prematuro/inmunología , Nacimiento Prematuro/microbiología , Infecciones del Sistema Genital/inmunología , beta-Defensinas/genética , Animales , Animales Recién Nacidos , Cuello del Útero/metabolismo , Cuello del Útero/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Femenino , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo , Complicaciones Infecciosas del Embarazo/microbiología , Complicaciones Infecciosas del Embarazo/prevención & control , Nacimiento Prematuro/prevención & control , Infecciones del Sistema Genital/microbiología , Vagina/metabolismo , beta-Defensinas/metabolismo
8.
Sci Rep ; 10(1): 2121, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034258

RESUMEN

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Ratones Transgénicos/genética , Animales , Técnicas Biosensibles/métodos , Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Inflamación/genética , Luciferasas de Luciérnaga/genética , Ratones , FN-kappa B/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Virus Formadores de Foco en el Bazo/genética , Transcripción Genética/genética
9.
Methods Mol Biol ; 2081: 161-175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31721124

RESUMEN

In vivo bioluminescent imaging allows the detection of reporter gene expression in rodents in real time. Here we describe a novel technology whereby we can generate somatotransgenic rodents with the use of a viral vector carrying a luciferase transgene. We are able to achieve long term luciferase expression by a single injection of lentiviral or adeno-associated virus vectors to newborn mice. Further, we describe whole body bioluminescence imaging of conscious mice in a noninvasive manner, thus enforcing the 3R's (replacement, reduction, and refinement) of biomedical animal research.


Asunto(s)
Expresión Génica , Genes Reporteros , Mediciones Luminiscentes/métodos , Animales , Técnicas Biosensibles , Orden Génico , Vectores Genéticos/genética , Luciferasas de Luciérnaga/genética , Ratones , Plásmidos/genética , Transfección , Transgenes
10.
Gene Ther ; 26(3-4): 86-92, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30643205

RESUMEN

The manufacture of large quantities of high-quality DNA is a major bottleneck in the production of viral vectors for gene therapy. Touchlight Genetics has developed a proprietary abiological technology that addresses the major issues in commercial DNA supply. The technology uses 'rolling-circle' amplification to produce large quantities of concatameric DNA that is then processed to create closed linear double-stranded DNA by enzymatic digestion. This novel form of DNA, Doggybone™ DNA (dbDNA™), is structurally distinct from plasmid DNA. Here we compare lentiviral vectors production from dbDNA™ and plasmid DNA. Lentiviral vectors were administered to neonatal mice via intracerebroventricular injection. Luciferase expression was quantified in conscious mice continually by whole-body bioluminescent imaging. We observed long-term luciferase expression using dbDNA™-derived vectors, which was comparable to plasmid-derived lentivirus vectors. Here we have demonstrated that functional lentiviral vectors can be produced using the novel dbDNA™ configuration for delivery in vitro and in vivo. Importantly, this could enable lentiviral vector packaging of complex DNA sequences that have previously been incompatible with bacterial propagation systems, as dbDNA™ technology could circumvent such restrictions through its phi29-based rolling-circle amplification.


Asunto(s)
Vectores Genéticos/genética , Vectores Genéticos/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , ADN/genética , Terapia Genética/métodos , Células HEK293 , Humanos , Lentivirus/genética , Masculino , Ratones , Plásmidos/genética , Transfección
11.
Nat Commun ; 9(1): 3505, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158522

RESUMEN

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.


Asunto(s)
Argininosuccinatoliasa/metabolismo , Aciduria Argininosuccínica/metabolismo , Aciduria Argininosuccínica/terapia , Animales , Argininosuccinatoliasa/genética , Aciduria Argininosuccínica/genética , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/terapia , Citrulina/metabolismo , Terapia Genética , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/terapia , Hígado/citología , Ratones , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Estrés Nitrosativo/genética , Estrés Nitrosativo/fisiología
12.
Mol Ther Nucleic Acids ; 12: 626-634, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30081233

RESUMEN

Viral vectors are rapidly being developed for a range of applications in research and gene therapy. Prototype foamy virus (PFV) vectors have been described for gene therapy, although their use has mainly been restricted to ex vivo stem cell modification. Here we report direct in vivo transgene delivery with PFV vectors carrying reporter gene constructs. In our investigations, systemic PFV vector delivery to neonatal mice gave transgene expression in the heart, xiphisternum, liver, pancreas, and gut, whereas intracranial administration produced brain expression until animals were euthanized 49 days post-transduction. Immunostaining and confocal microscopy analysis of injected brains showed that transgene expression was highly localized to hippocampal architecture despite vector delivery being administered to the lateral ventricle. This was compared with intracranial biodistribution of lentiviral vectors and adeno-associated virus vectors, which gave a broad, non-specific spread through the neonatal mouse brain without regional localization, even when administered at lower copy numbers. Our work demonstrates that PFV can be used for neonatal gene delivery with an intracranial expression profile that localizes to hippocampal neurons, potentially because of the mitotic status of the targeted cells, which could be of use for research applications and gene therapy of neurological disorders.

13.
Am J Pathol ; 188(10): 2164-2176, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30036519

RESUMEN

Preterm birth is a serious global health problem and the leading cause of infant death before 5 years of age. At least 40% of cases are associated with infection. The most common way for pathogens to access the uterine cavity is by ascending from the vagina. Bioluminescent pathogens have revolutionized the understanding of infectious diseases. We hypothesized that bioluminescent Escherichia coli can be used to track and monitor ascending vaginal infections. Two bioluminescent strains were studied: E. coli K12 MG1655-lux, a nonpathogenic laboratory strain, and E. coli K1 A192PP-lux2, a pathogenic strain capable of causing neonatal meningitis and sepsis in neonatal rats. On embryonic day 16, mice received intravaginal E. coli K12, E. coli K1, or phosphate-buffered saline followed by whole-body bioluminescent imaging. In both cases, intravaginal delivery of E. coli K12 or E. coli K1 led to bacterial ascension into the uterine cavity, but only E. coli K1 induced preterm parturition. Intravaginal administration of E. coli K1 significantly reduced the proportion of pups born alive compared with E. coli K12 and phosphate-buffered saline controls. However, in both groups of viable pups born after bacterial inoculation, there was evidence of comparable brain inflammation by postnatal day 6. This study ascribes specific mechanisms by which exposure to intrauterine bacteria leads to premature delivery and neurologic inflammation in neonates.


Asunto(s)
Lesiones Encefálicas/microbiología , Nacimiento Prematuro/microbiología , Enfermedades Vaginales/microbiología , Animales , Animales Recién Nacidos , Corioamnionitis/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/fisiopatología , Femenino , Enfermedades Fetales/microbiología , Ratones , Embarazo , Complicaciones Infecciosas del Embarazo/microbiología
14.
Methods Mol Biol ; 1651: 49-64, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28801899

RESUMEN

The application of luciferase reporter genes to provide quantitative outputs for the activation of promoters is a well-established technique in molecular biology. Luciferase catalyzes an enzymatic reaction, which in the presence of the substrate luciferin produces photons of light relative to its molar concentration. The luciferase transgene can be genetically inserted at the first intron of a target gene to act as a surrogate for the gene's endogenous expression in cells and transgenic mice. Alternatively, promoter sequences can be excised and/or amplified from genomic sources or constructed de novo and cloned upstream of luciferase in an expression cassette transfected into cells. More recently, the development of synthetic promoters where the essential components of an RNA polymerase binding site and transcriptional start site are fused with various upstream regulatory sequences are being applied to drive reporter gene expression. We have developed a high-throughput cloning strategy to develop lentiviral luciferase reporters driven by transcription factor activated synthetic promoters. Lentiviruses integrate their payload cassette into the host cell genome, thereby facilitating the study of gene expression not only in the transduced cells but also within all subsequent daughter cells. In this manuscript we describe the design, vector construction, lentiviral transduction, and luciferase quantitation of transcription factor activated reporters (TFARs) in vitro and in vivo.


Asunto(s)
Genes Reporteros , Luciferasas de Luciérnaga/análisis , Sustancias Luminiscentes/análisis , Mediciones Luminiscentes/métodos , Regiones Promotoras Genéticas , Activación Transcripcional , Animales , Clonación Molecular , Luciérnagas/enzimología , Luciérnagas/genética , Células HEK293 , Humanos , Lentivirus/genética , Luciferasas de Luciérnaga/genética , Sustancias Luminiscentes/metabolismo , Ratones , Factores de Transcripción/metabolismo , Transducción Genética/métodos , Transgenes
15.
Sci Rep ; 7(1): 6374, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743959

RESUMEN

Luciferase bioimaging in living animals is increasingly being applied in many fields of biomedical research. Rodent imaging usually involves anaesthetising the animal during data capture, however, the biological consequences of anaesthesia have been largely overlooked. We have evaluated luciferase bioimaging in conscious, unrestrained mice after neonatal intracranial or intravascular administration of lentiviral, luciferase reporter cassettes (biosensors); we present real-time analyses from the first day of life to adulthood. Anaesthetics have been shown to exert both neurotoxic and neuroprotective effects during development and in models of brain injury. Mice subjected to bioimaging after neonatal intracranial or intravascular administration of biosensors, targeting the brain and liver retrospectively showed no significant difference in luciferase expression when conscious or unconscious throughout development. We applied conscious bioimaging to the assessment of NFκB and STAT3 transcription factor activated reporters during the earliest stages of development in living, unrestrained pups. Our data showed unique longitudinal activities for NFκB and STAT3 in the brain of conscious mice. Conscious bioimaging was applied to a neonatal mouse model of cerebral palsy (Hypoxic-Ischaemic Encephalopathy). Imaging of NFκB reporter before and after surgery showed a significant increase in luciferase expression, coinciding with secondary energy failure, in lesioned mice compared to controls.


Asunto(s)
Encéfalo/metabolismo , Parálisis Cerebral/metabolismo , Hígado/metabolismo , Luciferasas/metabolismo , Imagen Molecular/métodos , Animales , Animales Recién Nacidos , Técnicas Biosensibles/métodos , Parálisis Cerebral/cirugía , Estado de Conciencia , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Inyecciones Intraarteriales , Lentivirus/genética , Luciferasas/genética , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Recombinantes/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
16.
Mol Ther ; 25(8): 1790-1804, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28550974

RESUMEN

Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos/genética , VIH-1/genética , ARN Viral , Secuencias Reguladoras de Ácido Ribonucleico , Transducción Genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Factor IX/genética , Expresión Génica , Orden Génico , Genes Reporteros , Terapia Genética , Genoma Viral , Duplicado del Terminal Largo de VIH , Hemofilia B/sangre , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Ratones , Provirus/genética , Recombinación Genética , Transgenes , Replicación Viral/genética
17.
Sci Rep ; 7: 41874, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28157201

RESUMEN

Molecular mechanisms regulating liver repair following cholestatic injury remain largely unknown. We have combined a mouse model of acute cholestatic liver injury, partial bile duct ligation (pBDL), with a novel longitudinal bioimaging methodology to quantify transcription factor activity during hepatic injury and repair. We administered lentiviral transcription factor activated luciferase/eGFP reporter (TFAR) cassettes to neonatal mice enabling longitudinal TFAR profiling by continued bioimaging throughout the lives of the animals and following pBDL in adulthood. Neonatal intravascular injection of VSV-G pseudotyped lentivirus resulted in almost exclusive transduction of hepatocytes allowing analysis of hepatocyte-specific transcription factor activity. We recorded acute but transient responses with NF-κB and Smad2/3 TFAR whilst our Notch reporter was repressed over the 40 days of evaluation post-pBDL. The bipotent hepatic progenitor cell line, HepaRG, can be directed to differentiate into hepatocytes and biliary epithelia. We found that forced expression of the Notch inhibitor NUMB in HepaRG resulted in enhanced hepatocyte differentiation and proliferation whereas over-expressing the Notch agonist JAG1 resulted in biliary epithelial differentiation. In conclusion, our data demonstrates that hepatocytes rapidly upregulate NF-κB and Smad2/3 activity, whilst repressing Notch signalling. This transcriptional response to cholestatic liver injury likely promotes partial de-differentiation to allow pro-regenerative proliferation of hepatocytes.


Asunto(s)
Colestasis/metabolismo , Hepatocitos/metabolismo , Hepatopatías/metabolismo , Transducción de Señal , Células 3T3 , Animales , Diferenciación Celular , Proliferación Celular , Colestasis/complicaciones , Colestasis/diagnóstico por imagen , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Hepatocitos/citología , Hepatocitos/fisiología , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Lentivirus/genética , Hepatopatías/diagnóstico por imagen , Hepatopatías/etiología , Luciferasas/genética , Luciferasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo
18.
Curr Stem Cell Rep ; 2: 9-20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27398291

RESUMEN

The pinnacle of four decades of research, induced pluripotent stem cells (iPSCs), and genome editing with the advent of clustered, regularly interspaced, short palindromic repeats (CRISPR) now promise to take drug development and regenerative medicine to new levels and to enable the interrogation of disease mechanisms with a hitherto unimaginable level of model fidelity. Autumn 2014 witnessed the first patient receiving iPSCs differentiated into retinal pigmented epithelium to treat macular degeneration. Technologies such as 3D bioprinting may now exploit these advances to manufacture organs in a dish. As enticing as these prospects are, these technologies demand a deeper understanding, which will lead to improvements in their safety and efficacy. For example, precise and more efficient reprogramming for iPSC production is a requisite for wider clinical adoption. Improving awareness of the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) and genomic epigenetic status will contribute to the achievement of these aims. Similarly, increased efficiency, avoidance of off-target effects, and expansion of available target sequences are critical to the uptake of genome editing technology. In this review, we survey the historical development of genetic manipulation and stem cells. We explore the potential of genetic manipulation of iPSCs for in vitro disease modeling, generation of new animal models, and clinical applicability. We highlight the aspects that define CRISPR-Cas as a breakthrough technology, look at gene correction, and consider some important ethical and societal implications of this approach.

20.
Sci Rep ; 5: 11842, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26138224

RESUMEN

The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively.


Asunto(s)
Luciferasas de Luciérnaga/genética , Factores de Transcripción/fisiología , Activación Transcripcional/inmunología , Animales , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Células HeLa , Humanos , Lentivirus/genética , Lipopolisacáridos/farmacología , Luciferasas de Luciérnaga/biosíntesis , Ratones , Células 3T3 NIH , Especificidad de Órganos , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...